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Abstract
Employing a recently proposed separability criterion we develop analytical
lower bounds for the concurrence and for the entanglement of formation
of bipartite quantum systems. The separability criterion is based on a
nondecomposable positive map which operates on state spaces with even
dimension, N � 4, and leads to a class of nondecomposable optimal
entanglement witnesses. It is shown that the bounds derived here complement
and improve the existing bounds obtained from the criterion of positive partial
transposition and from the realignment criterion.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Yz

1. Introduction

A central problem in quantum information theory [1, 2] is the formulation of appropriate
measures that quantify the degree of entanglement in composite systems. Particularly
important entanglement measures are the concurrence [3–5] and the entanglement of formation
[6, 7]. These quantities have been widely used in many applications. Examples include studies
on the role of entanglement in quantum phase transitions [8–10], on the emergence of long-
distance entanglement in spin systems [11] and on additivity properties of the Holevo capacity
of quantum channels [12].

The explicit determination of most of the proposed entanglement measures for a
generic state ρ is an extremely demanding task that requires the solution of a high-
dimensional optimization problem. The development of analytical lower bounds for the
various entanglement measures is therefore of great interest. Recently, Chen, Albeverio and
Fei [13, 14] have derived such bounds for the concurrence C(ρ) and for the entanglement of
formation E(ρ). They achieved this by relating C(ρ) and E(ρ) to two important and strong
separability criteria, namely to the Peres criterion of positive partial transposition (PPT)
[15, 16] and to the realignment criterion [17, 18]. According to these criteria a given state ρ
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is entangled (inseparable) if the trace norms ‖T2ρ‖ or ‖Rρ‖ are strictly larger than 1, where
T2 denotes the partial transposition and R the realignment transformation. In [13, 14] tight
lower bounds for C(ρ) and E(ρ) have been formulated in terms of these trace norms.

Here, we extend the connection between separability criteria and entanglement measures
to a new criterion which has been developed recently [19]. This criterion is based on a
universal nondecomposable positive map which leads to a class of optimal entanglement
witnesses. Employing these witnesses we derive analytical lower bounds for the concurrence
and for the entanglement of formation that can be expressed in terms of a simple linear
functional of the given state ρ.

The entanglement witnesses constructed here have the special feature of being
nondecomposable optimal. This notion has been introduced in [20, 21] to characterize
the optimality properties of entanglement witnesses. It means that the witnesses are able
to identify entangled PPT states and that no other witnesses exist which can detect more such
states. It follows that the bounds developed here can be sharper than those obtained from the
PPT criterion and that they are particularly efficient near the border that separates the PPT
entangled states from the separable states. In addition, we will demonstrate that they can
also be stronger than the bounds given by the realignment criterion. Hence, the new bounds
complement and considerably improve the existing bounds.

The paper is organized as follows. In section 2 we introduce a new separability criterion
which is based on a nondecomposable positive map that operates on the states of Hilbert
spaces with even dimension N � 4. We formulate and prove the most important properties of
this map and derive the associated class of optimal entanglement witnesses. Analytical lower
bounds for the concurrence are developed in section 3. In section 4 we discuss an example
of a certain family of states in arbitrary dimensions. It will be demonstrated explicitly with
the help of this example that the new bounds can be much sharper than the bounds of the PPT
and of the realignment criterion. The new class of entanglement witnesses is used in section 5
to develop corresponding lower bounds for the entanglement of formation. Finally, some
conclusions are drawn in section 6.

2. Separability criteria

We consider a quantum system with finite-dimensional Hilbert space C
N . Without loss of

generality one can regard C
N as the state space of a particle with a certain spin j , where

N = 2j + 1. As usual, the corresponding basis states are denoted by |j,m〉, where the
quantum number m takes on the values m = −j,−j + 1, . . . , +j .

2.1. Time reversal transformation

We will develop a necessary condition for the separability of mixed quantum states which
employs the symmetry transformation of the time reversal [22]. In quantum mechanics the
time reversal is to be described by an antiunitary operator θ . As for any antiunitary operator,
we can write θ = V θ0, where θ0 denotes the complex conjugation in the chosen basis |j,m〉
and V is a unitary operator. In the spin representation introduced above the matrix elements
of V are given by 〈j,m′|V |j,m〉 = (−1)j−mδm′,−m. For even N, i.e., for half-integer spins j ,
this matrix is not only unitary but also skew-symmetric, which means that V T = −V , where
T denotes the transposition. It follows that θ2 = −I which leads to

〈ϕ|θϕ〉 = 0. (1)

This relation expresses a well-known property of the time reversal transformation θ which
will play a crucial role in the following. For any state vector |ϕ〉 the time-reversed state |θϕ〉
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is orthogonal to |ϕ〉. This is a distinguished feature of even-dimensional state spaces, because
unitary and skew-symmetric matrices do not exist in state spaces with odd dimension.

The action of the time reversal transformation on an operator B on C
N can be expressed

by

ϑB = θB†θ−1 = V BT V †. (2)

This defines a linear map ϑ which transforms any operator B to its time reversed operator
ϑB. For example, if we take the spin operator ĵ of the spin-j particle this gives the spin flip
transformation ϑ ĵ = −ĵ.

2.2. Nondecomposable positive maps and optimal entanglement witnesses

A positive map is a linear transformation � which takes any positive operator B on some state
space H2 to a positive operator �B, i.e., B � 0 implies that �B � 0. A positive map � is
said to be completely positive if it has the additional property that the map I ⊗ � operating
on any composite system with state space H1 ⊗ H2 is again positive, where I denotes the
unit map. The physical significance of positive maps in entanglement theory is provided by a
fundamental theorem established in [16]. According to this theorem a necessary and sufficient
condition for a state ρ to be separable is that the operator (I ⊗ �)ρ is positive for any positive
map �. Hence, maps which are positive but not completely positive can be used as indicators
for the entanglement of certain sets of states.

An important example for a positive but not completely positive map is given by the
transposition map T. The inequality T2ρ ≡ (I ⊗ T )ρ � 0 represents a strong necessary
condition for separability known as the Peres criterion of positive partial transposition (PPT
criterion). The second relation of equation (2) shows that the time reversal transformation ϑ

is unitarily equivalent to the transposition map T. Hence, the PPT criterion is equivalent to the
condition that the partial time reversal ϑ2 is positive:

ϑ2ρ ≡ (I ⊗ ϑ)ρ � 0.

We define a linear map � which acts on operators B on C
N as follows [19]:

�B = (tr B)I − B − ϑB, (3)

where tr B denotes the trace of B and I is the unit operator. This map has first been introduced in
[23] for the special case N = 4, in order to study the entanglement structure of SU (2)-invariant
spin systems [24, 25].

For any even N � 4 the map � defined by equation (3) has the following features:

(A) � is a positive but not completely positive map.
(B) The map � is nondecomposable.
(C) The entanglement witnesses corresponding to � are nondecomposable optimal.

In the following we briefly explain these statements.
To show that � is a positive map one has to demonstrate that �(|ϕ〉〈ϕ|) is a positive

operator for any normalized state vector |ϕ〉. Using definition (3) we find

�(|ϕ〉〈ϕ|) = I − |ϕ〉〈ϕ| − |θϕ〉〈θϕ| ≡ I − �.

Because of equation (1) the operator � introduced here represents an orthogonal projection
operator which projects onto the subspace spanned by |ϕ〉 and |θϕ〉. It follows that also
�(|ϕ〉〈ϕ|) is a projection operator and, hence, that it is positive for any normalized state
vector |ϕ〉.
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The positivity of � implies that the inequality

�2ρ ≡ (I ⊗ �)ρ � 0 (4)

provides a necessary condition for separability: any state ρ which violates this condition must
be entangled. To show that � is not completely positive, i.e., that condition (4) is nontrivial,
we consider the tensor product space H1 ⊗H2 = C

N ⊗ C
N of two spin-j particles. The total

spin of the composite system will be denoted by J . According to the triangular inequality
J takes on the values J = 0, 1, . . . , 2j = N − 1. The projection operator which projects
onto the manifold of states corresponding to a definite value of J will be denoted by PJ . In
particular, P0 represents the one-dimensional projection onto the maximally entangled singlet
state J = 0.

We define a Hermitian operator W by applying I ⊗ � to the singlet state:

W ≡ N(I ⊗ �)P0, (5)

where the factor N is introduced for convenience. More explicit expressions for W can be
obtained as follows. First, we observe that tr2 P0 = I/N since P0 is a maximally entangled
state (tr2 denotes the partial trace taken over subsystem 2). Second, we note that the partial
time reversal of the singlet state is given by the formula [23]

ϑ2P0 = 1

N
F = − 1

N

2j∑
J=0

(−1)J PJ , (6)

where F denotes the swap operator defined by

F |ϕ1〉 ⊗ |ϕ2〉 = |ϕ2〉 ⊗ |ϕ1〉. (7)

Using then definition (3) we get

W = I − NP0 − F. (8)

Another useful representation is obtained by use of the fact that the sum of the PJ is equal to
the unit operator. Expressing F as shown in equation (6) we then find

W = −(N − 2)P0 + 2P2 + 2P4 + · · · + 2P2j−1. (9)

We infer from equation (9) that W has the negative eigenvalue −(N − 2) corresponding to the
singlet state J = 0. Therefore, the operator W is not positive and, hence, the map � is not
completely positive.

Since � is positive but not completely positive the operator W defined in equation (5) is an
entanglement witness [16, 26]. We recall that an entanglement witness is an observable which
satisfies tr{Wσ } � 0 for all separable states σ , and tr{Wρ} < 0 for at least one inseparable
state ρ, in which case we say that W detects ρ.

An entanglement witness W is called nondecomposable if it can detect entangled PPT
states [20], i.e., if there exist PPT states ρ that satisfy tr{Wρ} < 0. We will demonstrate in
section 4, by means of an explicit example, that there are always such states for the witness
defined by equation (5). It follows that our witness W is nondecomposable. This implies that
also the map � is nondecomposable [27], and that the criterion (4) is able to detect entangled
PPT states.

The observable W introduced above has a further remarkable optimality property. To
explain this property we introduce the following notation [20]. We denote by DW the
set of all entangled PPT states of the total state space which are detected by some given
nondecomposable witness W . A witness W2 is said to be finer than a witness W1 if DW1 is
a subset of DW2 , i.e., if all entangled PPT states which are detected by W1 are also detected
by W2. A given witness W is said to be nondecomposable optimal if there is no other witness
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which is finer. This means that no other witness exists which detects all entangled PPT states
that are already recognized by W , and which is able to detect further such states that are not
recognized by W . It can be shown that the witness W defined by equation (5) is always
optimal in this sense [19].

3. Bounds for the concurrence

The generalized concurrence of a pure state ρ = |ψ〉〈ψ | is defined by [5]

C(|ψ〉) =
√

2
(
1 − tr1 ρ2

1

)
,

where ρ1 = tr2 ρ represents the reduced density matrix of subsystem 1, given by the partial
trace taken over subsystem 2. We consider the Schmidt decomposition

|ψ〉 =
∑

i

αi |ϕi〉 ⊗ |χi〉, (10)

where {|ϕi〉} and {|χi〉} are orthonormal bases in H1 and H2, respectively, and αi are the
Schmidt coefficients satisfying αi � 0 and the normalization condition∑

i

α2
i = 1. (11)

The concurrence can then be expressed in terms of the Schmidt coefficients:

C(|ψ〉) =
√

2
∑
i �=j

α2
i α

2
j . (12)

For a mixed state ρ the concurrence is defined to be

C(ρ) = min

{∑
r

prC(|ψr〉)
∣∣∣∣ρ =

∑
r

pr |ψr〉〈ψr |
}

, (13)

where the minimum is taken over all possible convex decompositions of ρ into an ensemble
{|ψr〉} of pure states with probability distribution {pr}.

Let ρ = ∑
r pr |ψr〉〈ψr | be an optimal decomposition of ρ for which the minimum of

equation (13) is attained. Denoting the Schmidt coefficients of |ψr〉 by αr
i we then have

C(ρ) =
∑

r

prC(|ψr〉)

=
∑

r

pr

√
2
∑
i �=j

(
αr

i

)2(
αr

j

)2

�
∑

r

pr

√
2

N(N − 1)

∑
i �=j

αr
i α

r
j . (14)

In the second line we have used equation (12), and the third line is obtained with the help of
the inequality

∑
i �=j

α2
i α

2
j � 1

N(N − 1)


∑

i �=j

αiαj




2

,

which holds for any set of N numbers αi [13].
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Consider now any real-valued and convex functional f (ρ) on the total state space with
the following property. For all state vectors |ψ〉 with Schmidt decomposition (10) we have

f (|ψ〉〈ψ |) �
∑
i �=j

αiαj . (15)

Given such a functional we can continue inequality (14) as follows:

C(ρ) �
√

2/N(N − 1)
∑

r

pr

∑
i �=j

αr
i α

r
j

�
√

2/N(N − 1)
∑

r

prf (|ψr〉〈ψr |)

�
√

2/N(N − 1)f

(∑
r

pr |ψr〉〈ψr |
)

=
√

2/N(N − 1)f (ρ).

In the second line we have used inequality (15), and in the third line the convexity of f (ρ).
We conclude that any convex functional f (ρ) with the property (15) leads to a lower

bound for the concurrence:

C(ρ) �
√

2

N(N − 1)
f (ρ).

In [13] two examples for such a functional f (ρ) have been constructed which are based on
the PPT criterion and on the realignment criterion:

fppt(ρ) = ‖T2ρ‖ − 1, frealign(ρ) = ‖Rρ‖ − 1,

where T2 denotes the partial transposition and R the realignment transformation. These
functionals are convex because of the convexity of the trace norm which is defined by
‖A‖ = tr

√
A†A. Moreover, for both functionals the equality sign of equation (15) holds

fppt(|ψ〉〈ψ |) = frealign(|ψ〉〈ψ |) =
∑
i �=j

αiαj . (16)

Consider the functional

fW(ρ) = − tr(Wρ),

where W is the entanglement witness introduced in equation (5). This functional is linear and
of course convex. We claim that fW(ρ) also satisfies the bound (15), i.e., for any state vector
|ψ〉 with Schmidt decomposition (10) we have

fW(|ψ〉〈ψ |) ≡ −〈ψ |W |ψ〉 �
∑
i �=j

αiαj . (17)

To show this we first determine the expectation value of W . From equation (6) we have
NP0 = ϑ2F and, hence, expression (8) can be written as W = I − F − ϑ2F . This gives

〈ψ |W |ψ〉 = 1 − 〈ψ |F |ψ〉 − 〈ψ |ϑ2F |ψ〉.
With the help of the definitions of the swap operator F (equation (7)) and of the time reversal
transformation (equation (2)) it is easy to verify the formulae

〈ψ |F |ψ〉 =
∑
ij

αiαj 〈ϕi |χj 〉〈χi |ϕj 〉,

〈ψ |ϑ2F |ψ〉 =
∑
ij

αiαj 〈ϕi |θχi〉〈θχj |ϕj 〉.
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This leads to

〈ψ |W |ψ〉 = 1 −
∑
ij

αiαjAij ,

where

Aij ≡ 〈ϕi |χj 〉〈χi |ϕj 〉 + 〈ϕi |θχi〉〈θχj |ϕj 〉. (18)

Hence, we have

fW(|ψ〉〈ψ |) =
∑
ij

αiαjAij − 1 �
∑
ij

αiαj |Aij | − 1.

It is shown in appendix A that

|Aij | � 1. (19)

This leads immediately to the desired inequality

fW(|ψ〉〈ψ |) �
∑
ij

αiαj − 1 =
∑
i �=j

αiαj ,

where we have used the normalization condition (11).
Summarizing, we have obtained the following lower bound for the concurrence:

C(ρ) � −
√

2

N(N − 1)
tr(Wρ). (20)

Of course, this bound is only nontrivial if ρ is detected by the entanglement witness W , i.e.,
if tr(Wρ) < 0. It will be demonstrated in section 4 that this bound can be much stronger than
the bounds given by fppt and frealign, which is due to the fact W identifies many entangled
states that are neither detected by the PPT criterion nor by the realignment criterion.

4. Example

We illustrate the application of the inequality (20) with the help of a certain family of states.
This family contains a separable state, entangled PPT states, as well as entangled states whose
partial transposition is not positive. The example will also lead to a proof of the claim that the
map � and the witness W are nondecomposable.

Consider the following one-parameter family of states:

ρ(λ) = λP0 + (1 − λ)ρ0, 0 � λ � 1. (21)

These normalized states are mixtures of the singlet state P0 and of the state

ρ0 = 2

N(N + 1)
PS = 2

N(N + 1)

∑
Jodd

PJ ,

where PS denotes the projection onto the subspace of states which are symmetric under the
swap operation F. We note that ρ0 is a separable state which belongs to the class of the
Werner states [28]. Since PS can be written as a sum over the projections PJ with odd J , we
immediately get with the help of equation (5):

tr(Wρ(λ)) = −λ(N − 2). (22)

Hence, we find that tr(Wρ(λ)) < 0 for λ > 0. It follows that all states of the family (21)
corresponding to λ > 0 are entangled, and that ρ0 is the only separable state of this family.
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Employing equations (22) and (20) we get the following lower bound for the concurrence:

C(ρ(λ)) �
√

2(N − 1)

N

N − 2

N − 1
λ. (23)

To compare this bound with those obtained from the PPT and the realignment criterion we
have to determine the trace norms ‖T2ρ(λ)‖ and ‖Rρ(λ)‖. The details of the calculation are
presented in appendix B. One finds that the PPT criterion gives the bounds

C(ρ(λ)) �




0, λ � 1

N + 2√
2(N − 1)

N

N − 2

N(N − 1)
[(N + 2)λ − 1],

1

N + 2
� λ � 1

2√
2(N − 1)

N

Nλ − 1

N − 1
,

1

2
� λ

(24)

while the realignment criterion yields

C(ρ(λ)) �




√
2(N − 1)

N

−2λ

N − 1
, λ � 1

N + 2√
2(N − 1)

N

Nλ − 1

N − 1
,

1

N + 2
� λ.

(25)

Relations (23)–(25) lead to a number of important conclusions. First of all, we observe
from equation (24) that the states within the range λ � 1/(N + 2) have positive partial
transposition (in this range ‖T2ρ(λ)‖ is equal to 1, see appendix B). But from equation (22)
we know that all states with λ > 0 must be entangled. It follows that all states in the range
0 < λ � 1/(N + 2) are entangled PPT states which are detected by the witness W . This proves,
as claimed in section 2, that the witness W and, hence, also the map � are nondecomposable.

According to equation (24) the PPT criterion only detects the entanglement of the states
with λ > 1/(N + 2). For the family of states given by equation (21) the PPT criterion is
thus weaker than the criterion based on the witness W . As can be seen from equation (25)
the realignment criterion is even weaker because it only recognizes the entanglement of the
states with λ > 1/N (the trace norm of Rρ(λ) is larger than 1 if and only if λ > 1/N , see
appendix B).

A plot of the various lower bounds for the example N = 4 is shown in figure 1. We see
that the new bound (23) is the best one within the range λ < 1/2. The bounds given by the
PPT and the realignment criterion coincide in the range λ > 1/2. In this range they are better
than the new bound. Note that these features hold true for all N. We remark that for large N
the concurrence approaches the limit C(ρ(λ)) = √

2λ.

5. Entanglement of formation

For a pure state |ψ〉 with Schmidt decomposition (10) one defines the entanglement of
formation by

E(|ψ〉) = H(α) ≡ −
∑

i

α2
i log α2

i ,

where α denotes the vector of the Schmidt coefficients, and log is the base 2 logarithm.
The quantity H(α) is the Shannon entropy of the distribution α2

i , which is equal to the von
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Figure 1. Concurrence of the states (21) for N = 4. Solid line: the new lower bound given by
equation (23). Dashed line: lower bound given by the PPT criterion (equation (24)). Dashed-dotted
line: lower bound given by the realignment criterion (equation (25)). Dotted line: upper bound
given by C(ρ(λ)) � √

2(N − 1)/Nλ.

Neumann entropy of the reduced density matrices. This definition is extended to mixed states
through the convex hull construction:

E(ρ) = min

{∑
r

prE(|ψr〉)
∣∣∣∣ρ =

∑
r

pr |ψr〉〈ψr |
}

,

where the minimum is again taken over all possible convex decompositions of ρ.
An analytical lower bound for the entanglement of formation has been constructed in

[14], which may be described as follows. First, for 1 � � � N one defines the function

R(�) = min
α


H(α)

∣∣∣∣∑
ij

αiαj = �


 .

The minimum is taken over all Schmidt vectors α, i.e., R(�) is the minimal value of the
entropy H(α) under the constraint

∑
ij αiαj = �. The solution of this minimization problem

has been derived by Terhal and Vollbrecht [29]:

R(�) = H2(γ (�)) + [1 − γ (�)] log(N − 1),

where

γ (�) = 1

N2

[√
� +

√
(N − 1)(N − �)

]2
,

and

H2(x) = −x log x − (1 − x) log(1 − x)

is the binary entropy. Second, one introduces the convex hull co[R(�)] of R(�). This is the
largest convex function which is bounded from above by R(�). One then gets the following
lower bound for the entanglement of formation:

E(ρ) � co[R(�0)], �0 ≡ max{‖T2ρ‖, ‖Rρ‖}. (26)

The decisive point of the construction given in [14] is the fact that (see equation (16))

‖T2(|ψ〉〈ψ |)‖ = ‖R(|ψ〉〈ψ |)‖ =
∑
ij

αiαj = �.
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Figure 2. Entanglement of formation of the states (21) for N = 4. Solid line: the new lower
bound given by equations (27)–(29). Dashed line: lower bound given by equation (26). Dotted
line: upper bound given by E(ρ(λ)) � λ log N .

This means that the function R(�) yields the minimal entropy H(α) under the constraint of
a fixed value � for the trace norm ‖T2(|ψ〉〈ψ |)‖ or ‖R(|ψ〉〈ψ |)‖. But from equation (17) we
also have

1 − 〈ψ |W |ψ〉 �
∑
ij

αiαj = �.

By use of this inequality one can immediately repeat the proof of [14], replacing the trace
norm ‖T2ρ‖ or ‖Rρ‖ by the quantity 1 − tr(Wρ). Hence, we are led to a sharper bound for
the entanglement of formation

E(ρ) � co[R(�0)], �0 ≡ max{‖T2ρ‖, ‖Rρ‖, 1 − tr(Wρ)}. (27)

Let us apply this result to the family of states given in equation (21). In this case we have

�0 = max{Nλ, (N − 2)λ + 1}.
By use of the Terhal–Vollbrecht conjecture [29] on the form of the function co[R(�)] (see
also [30]) we get

E(ρ(λ)) � H2(γ (�0)) + [1 − γ (�0)] log(N − 1) (28)

for 1 � �0 � 4(N − 1)/N and

E(ρ(λ)) � log(N − 1)

N − 2
(�0 − N) + log N (29)

for 4(N − 1)/N � �0 � N . The general features of this result are similar to those discussed
within the context of the concurrence. The special case N = 4 is plotted in figure 2. We
finally note that

E(ρ(λ)) ∼ λ log N

represents the asymptotic limit of the entanglement of formation for large N.
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6. Conclusions

By use of a universal positive map � we have obtained a class of nondecomposable optimal
entanglement witnesses W . Employing these witnesses analytical bounds for the concurrence
and for the entanglement of formation have been developed. Similar bounds can be derived
for other measures, e.g., for the entanglement measure which is known as tangle [31]. Due to
the fact that W is a nondecomposable optimal entanglement witness, the bounds obtained here
are particularly good near the boundary which separates the region of classically correlated
states from the region of entangled states with positive partial transposition.

It should be clear from the general considerations in sections 3 and 5 and from the example
of section 4 that the bounds derived here are not intended to replace other known bounds,
but rather to complement these. In fact, the bounds based on the witness W can be weaker
than those given by PPT or the realignment criterion, in particular in those cases in which
the optimal decomposition of ρ consists entirely of maximally entangled states. To give
an example, we consider the family of states which are invariant under all unitary product
transformations of the form U ⊗ U ∗, where U ∗ denotes the complex conjugation of U. These
states, known as isotropic states [32], can be parameterized by a single parameter, namely by
their fidelity f ∈ [0, 1]. The isotropic states for f � 1/N are separable and for f > 1/N

their concurrence is given by [31]

C(f ) =
√

2N

N − 1

(
f − 1

N

)
. (30)

The right-hand side of this equation coincides with the bound given by the PPT criterion,
i.e., the application of the latter already yields the exact expression for the concurrence [13].
On the other hand, the bound given by equation (20) yields

C(f ) �
√

2N

N − 1

N − 2

N − 1

(
f − 1

N

)
. (31)

Since the right-hand side is strictly larger than zero for f > 1/N we can conclude that,
like the PPT criterion, also the new criterion (4) provides a necessary and sufficient condition
for the separability of the isotropic states. But if we compare equations (30) and (31) we
see that the bound obtained by the witness W is always weaker than the bound of the PPT
criterion. Note, however, that for large N the difference between these bounds is only of order
1/N .

We finally indicate some generalizations of the present approach. An obvious extension
concerns the definition of the entanglement witness W given by equation (5). According to
this definition the witness W depends of course on the chosen basis and is not invariant under
local unitary transformations. However, for any product transformation U = U1 ⊗ U2 with
unitary operators U1 and U2 the observable WU = UWU † is again an entanglement witness.
It is clear from the proof given in appendix A that for arbitrary U1 and U2 the witness WU also
satisfies the inequality (17). It follows that we may perform the replacement

tr(Wρ) −→ min
U

{tr(WUρ)}
in the bounds for the concurrence (equation (20)) and for the entanglement of formation
(equation (27)), where the minimum is taken over all product unitaries U = U1 ⊗ U2. This
replacement sharpens the lower bounds and ensures that they are invariant under local unitary
operations.

For simplicity we have restricted ourselves to the case of bipartite systems with state
space C

N ⊗ C
N . The definition W = N(I ⊗ �)P0 for the witness W can be extended to
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state spaces C
M ⊗ C

N with arbitrary M > N in an obvious way, replacing the singlet state P0

by any maximally entangled pure state in C
M ⊗ C

N . Moreover, an extension of the present
approach to state spaces with odd dimension N seems to be possible. To this end one has
to drop the condition that the operator V introduced in section 2.1 is unitary, i.e., one only
requires that V is skew-symmetric and that V †V � I . It is worth investigating applications of
these constructions to bipartite and multipartite quantum systems.

Appendix A. Proof of inequality (19)

To prove inequality (19) we consider a fixed pair (i, j) of indices and decompose |θχi〉 into a
component which is parallel to |χj 〉 and a component which is perpendicular to |χj 〉:

|θχi〉 = λ|χj 〉 + µ
∣∣χ⊥

j

〉
, (A.1)

where
〈
χj

∣∣χ⊥
j

〉 = 0 and |λ|2 + |µ|2 = 1. Applying the time reversal transformation to this
equation we get

|χi〉 = −λ∗|θχj 〉 − µ∗∣∣θχ⊥
j

〉
. (A.2)

Inserting (A.1) and (A.2) into expression (18) one obtains

Aij = µ
[〈ϕi |χj 〉

〈
θϕj

∣∣χ⊥
j

〉 − 〈
ϕi

∣∣χ⊥
j

〉〈θϕj |χj 〉
]
.

Since |µ| � 1 this leads to

|Aij | � ab + cd,

where we have introduced the quantities

a = |〈ϕi |χj 〉|, b = ∣∣〈θϕj

∣∣χ⊥
j

〉∣∣, c = ∣∣〈ϕi

∣∣χ⊥
j

〉∣∣, d = |〈θϕj |χj 〉|.
Since |χj 〉 is perpendicular to

∣∣χ⊥
j

〉
by construction, we have

a2 + c2 = |〈ϕi |χj 〉|2 +
∣∣〈ϕi

∣∣χ⊥
j

〉∣∣2 � 1,

and, therefore, c �
√

1 − a2. In a similar manner we get d �
√

1 − b2. Hence, we obtain

|Aij | � ab +
√

1 − a2
√

1 − b2.

It is easy to see that the right-hand side of this inequality is smaller than or equal to 1 for all
a, b ∈ [0, 1], which yields the desired inequality (19).

Appendix B. Determination of the trace norms ‖T2ρ(λ)‖ and ‖Rρ(λ)‖
Since T2ρ and ϑ2ρ are unitarily equivalent, we have ‖T2ρ(λ)‖ = ‖ϑ2ρ(λ)‖. Using
equations (21) and (6) and the representation PS = (I + F)/2 we get

ϑ2ρ(λ) = 1 − 2λ

N
P0 +

1

N

2j∑
J=1

[
(−1)J+1λ +

1 − λ

N + 1

]
PJ .

Hence, the trace norm of T2ρ(λ) is found to be

‖T2ρ(λ)‖ = |1 − 2λ|
N

+
2j∑

J=1

2J + 1

N

∣∣∣∣(−1)J+1λ +
1 − λ

N + 1

∣∣∣∣ .



Separability criteria and bounds for entanglement measures 11859

Carrying out this sum one gets

‖T2ρ(λ)‖ − 1 =




0, λ � 1

N + 2
N − 2

N
[(N + 2)λ − 1],

1

N + 2
� λ � 1

2

Nλ − 1,
1

2
� λ

which yields the lower bounds of equation (24).
To determine ‖Rρ(λ)‖ we note that the realignment transformation may be written as

Rρ = ϑ2(Fρ). Using FP0 = −P0 and FPS = PS one easily deduces that

Rρ(λ) = 1

N
P0 +

1

N

2j∑
J=1

[
(−1)J λ +

1 − λ

N + 1

]
PJ ,

which yields

‖Rρ(λ)‖ = 1

N
+

2j∑
J=1

2J + 1

N

∣∣∣∣(−1)J λ +
1 − λ

N + 1

∣∣∣∣ .
The evaluation of this sum leads to

‖Rρ(λ)‖ − 1 =




−2λ, λ � 1

N + 2

Nλ − 1,
1

N + 2
� λ

which gives the lower bounds of equation (25).
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